JD0104E 阅读器说明书

说明书

北京视佳伟业科技有限公司

文档修改历史

版本	描述	日期
V2.0	创建	2023.03

版权说明

版权 ©

- ◆ 北京视佳伟业科技有限公司是依法行使本著作权的合法权利人。
- ◆ 未经北京视佳伟业科技有限公司署名许可,任何其他个人或组织,均不得以任
- ◆ 何形式将本刊物节选、转载、复制、翻译、编辑、发布或将其储存到检索系统使 用于其他场合。
- ◆ 感谢使用北京视佳伟业科技有限公司提供的阅读器产品,本产品是一款 RFID 数据 采集设备,订购产品前,请向本公司详细了解产品性能是否符合您的使用要求。部分 产品并不完全具备本手册中所描述的功能,客户可根据需要,增加产品的功能,具体 情况与本公司的技术人员或业务人员联系。
- ◆ 本手册提供的资料力求准确和可靠,所有操作需严格按照文中的要求进行,本公司对侵权使用或违规使用本手册而造成的后果不承担法律责任。
- ◆ 本公司有权根据技术发展的需要对手册内容内容进行修改更新。
- ◆ 本手册内容,如有修改,恕不另行通知。

目 录

一、	产	·品概述	2
	1.	产品简介	2
		(1) 产品特性	2
		(2) 技术规格	3
		(3) 外形尺寸	3
二、	装	置使用说明	5
	1.	系统连接示意图	5
	2.	电源安装	6
	3.	天线连接	7
	4.	通讯线连接	9
Ξ、	软	1	10
	1.	启动设备	10
	2.	连接电脑	11
	3.	设定被测传感器	12
	4.	读温启动	13
	5.	实时温度获取	13
	6.	曲线功能	14
	7.	传感器信息修改操作	14
四、	通	讯规约说明1	15
五、	常	·见问题及及解决办法 1	18

一、产品概述

1. 产品简介

北京视佳伟业科技有限公司 JD0104E 阅读器是一款高性能的 UHF 超高频传感器读写器,系视佳伟业多年应用后设计设计而成,产品结合专有的高效信号处理算法,在保持高识读率的同时,实现对传感器的快速读写和温度测量处理,可广泛应用于电力、新能源、高能耗设备、轨道交通及生产过程控制等多种无线射频识别(RFID)系统。

图 1: 阅读器 JD0104E

(1) 产品特性

- ▶ 工作频率 840~960MHz (可以按不同国家或地区要求调整);
- ▶ 基于 Impinj R2000 读写引擎设计,充分支持符合 EPC CLASS1 G2、IS018000-6B 标准的电子标签;
- ▶ 支持传感器的测温功能;
- ▶ 以广谱跳频 (FHSS)或定频发射方式工作,支持 RSSI 功能;
- ▶ 输出功率达至 30dBm (可调);
- ▶ 支持 4 口(型号 YH0104)外接 SMA 天线接口,支持天线自动微调谐和天线检测;

- ▶ 低功耗设计,直流 9V~36V 电源供电;
- ▶ 支持双路 MODBUS 接口(独立 MODBUS 地址)、可选配 RJ45(TCP/IP)接口;
- ▶ 尺寸: 189mm/158mm×192mm×25mm, 精致小巧设计,满足多种应用场合需求;
- ➤ 重量: 360g。

(2)技术规格

项目	技术指标	单位	备注
电源电压 VCC	+9~36	V	
功耗	≤10	W	
工作频率	840 ~ 960	MHz	
输出功率	30	dBm	功率软件可调
工作温度Topr	−20 ~ +55	°C	
贮藏温度 T _{str}	−20 ~ +85	°C	
支持协议	兼容 ISO18000-6C(EPC G2)		
接收灵敏度	<-85	dBm	
天线接口	4 路 SMA 型母头		
数据接口	RS485		

(3) 外形尺寸

外形尺寸: 189mm×92mm×27mm

① 电源接口

序号	符号	描述
1	PWR	+9~24V 电源
2	GND	地

② 设备开关

③ 工作指示灯

序号	符号	描述
红	Red	电源指示
黄	Yellow	辅 MODBUS 工作指示
绿	Green	主 MODBUS 工作指示

④ 双路 MODBUS 接口

序号	符号	描述
1	AR+	辅 MODBUS 接口数据端
2	AR-	辅 MODBUS 接口数据端
3	MR+	主 MODBUS 接口数据端
4	MR-	主 MODBUS 接口数据端

- ⑤ TCPIP 网络接口 RJ45 (选配)
- ⑥ SMA 天线接口 ANT1~ANT4

二、装置使用说明

阅读器设备属于精密仪器,使用过程中请按说明书要求。阅读器、电源适配器在工作过程中会出现温度上升,应避免该器件放置在高温高湿环境中使用,同时要注意防水防尘和散热。阅读器天线的放置要尽可能与被测传感器的表面保持平行状态,传感器需要贴覆于测温点表面而获得正常的读温距离。

1. 系统连接示意图

2. 电源安装

打开包装盒,取出 JD0104E 型阅读器,查看是否有损,并查看相关接线端子是否完整。

阅读器外接端子共计两组,2P端子用于外接电源,4P端子用于连接信号线,具体功能及接线名称在阅读器上均有所标注。端子可以取下,便于使用过程中拔插。

取出电源适配器,在输出端剥出线头,并参考相应的位置,将线头插入接线端子内部,并 用螺丝刀将其固定,保证线头不出现短路和松动。

将连接完成的接线端子插入阅读器电源输入口,同时,将 8 字头电源线插入电源适配器, 另一端接 220V 市电插座。在接通电源后,电源适配器上的指示灯会处于常亮状态(备注: 部 分电源适配器不带有指示灯)。

3. 天线连接

JD0104E型阅读器,主要针对电力现场使用,其上配有 4 个 SMA 天线接口(母头), 用于外接阅读器天线。标配的 ACR8080-C 阅读器天线接口为对应的 SMA 公头,将二者直接对

插并旋紧螺母,即完成安装。在安装完成后,请注意查看所接天线接口在阅读器上的序号,便于操作软件过程中对天线的选择。

在实际应用环境中,若出现天线线长不足,或有特殊安装需求等情况,可以使用套件中备用的射频延长线进行安装即可。射频延长线的公头对应阅读器的母头,射频延长线的母头对应天线的公头,但线材长度的增加会使发射功率出现一定的衰减,减小传感器识读距离,具体如下:

4. 通讯线连接

目前该阅读器采用的是 RS458 通讯接口连接,该接口不能被电脑直接识别,故需利用到 RS232 转 RS485 接线头。利用带有屏蔽层的双绞通讯线,一端接入转换头的外接端子处,另一端接入阅读器的 4P 通讯线端子对应位置。具体对应的关系如下: A1/A2→ T/R+ 、B1/B2→ T/R- (相互间不得交叉使用,否则无法识别)。具体连接如下:

然后将配送的 9P 串口数据线串口端插入转接头上的 9P 串口母头,插入时请注意方向,同时,为防止脱落,可适当旋转线头两侧的螺杆,使其固定到转接头螺母上。

然后,将串口线的 USB 端插入电脑的 USB 口,使其与电脑连接。

(4) 实物连接示意图

整体连接完成后的效果如下:

三、软件操作

1. 启动设备

测试场景搭建完成后,在保证阅读器通电正常的情况下,拨动阅读器背侧的船型开关,使阅读器处于开启状态。开启后,船型开关右侧的红色指示灯会被点亮,同时蜂鸣器会发出"滴"的一声,表示阅读器自检完成,可以正常使用。

2. 连接电脑

打开测温软件,并点击 "RS485 设置",在串口号的下拉列表中可以看到被软件自动识别的串口号,如未识别到,请点击刷新串口按钮。

然后在波特率栏下拉选择 9600, 校验位设置为无校验, 其他选项为默认参数, 不作特殊 修改。阅读器设置中的系统状态为恒读温模式。设置完成后, 点击打开按钮, 开启软件。

3. 设定被测传感器

软件打开后,在弹出的传感器信息列表中,可以直观的看到预置到阅读器中的传感器 EPCID 信息,若列表中无被测传感器,则需将该传感器的 EPCID 写入到软件中,点击即可修改。 然后,选中被测传感器 EPCID,勾选其后面对应的启动选项栏。

同时,对天线进行选择。点击天线选项,在弹出的对话框中选择已安装的天线所在位置序号并点击确定按钮,确认"当前天线"显示栏,对应天线置"1"("当前天线"显示栏从右往左 16 位对应天线端口 1 到端口 16)。

所有操作完成后,返回信息列表,并在对应传感器的末端点击设置按钮,点击后,软件右侧的输出信息列表中将提示设置是否成功。需要强调的是,对被测传感器的任意参数作修改之后,均需点击设置按钮,否则修改无效。

~	获取	设置						
	获取	设置						
当前天线	备注		启动	取色	天线	获取	设置	٦
00000000000000001				取色	天线	获取	设置	1
0000000000000000					The State of the state of		100	7
				取色	天线	获取	设置	ш
0000000000000001				取色取色	天线	获取 获取	设置	J
000000000000000000000000000000000000000							-	J
00000000000000000001 00000000000000000				取色	天线	获取	设置	
00000000000000000000000000000000000000				取色取色	天线	获取 获取	设置	

4. 读温启动

当所有操作完成后,点击开始监控按钮,此时界面上会弹出正在启动的提示对话框,点 击确定按钮。启动完成后,界面上会弹出对话框,继续点击确定按钮,读温操作随即开始。

5. 实时温度获取

启动成功后,点击软件界面最上端的"实时监控"栏,进入实时温度显示界面。下方色块

区域上变化的数字即代表对应的测温传感器所测得的实际温度值。

6. 曲线功能

测试软件中含有曲线功能,该功能主要是针对历史数据记录和温度变化趋势的分析。曲线分为实时曲线和历史曲线,点击历史数据栏目,可以看到被测对象所形成的实时温度曲线,如图所示:

7. 传感器信息修改操作

在实时读温过程中,若要对传感器信息做适当修改,可在实时监控界面,双击对应传感器 所处色块区域的空白处,在弹出的对话框中,可以对传感器的传感信息、EPCID、曲线颜色等 做相应的修改,修改完成后点击更新按钮即可。

四、通讯规约说明

MODBUS RTU 通讯规约

帧定义

起始位	数据长度	校验位	停止位		
1位	8位	0或1位	1位		

功能码表

码值	功能
03H	Get
16H	Set

读数据寄存器(功能码03)

由主站机发送包裹请求所有有效的寄存器(在起始寄存器和终止寄存器之间)。

16 位数据模式:

Addr	Fun	Datastart	Data start	NUM #of	Data #of	CRC16	CRC16	
		addr hi	addr Io	regs hi	regs I	lo	hi	
XXH	03H	01H	XX H	00 H	XX H	XX Н	XX Н	

说明: ADDR: 从站地址 1个字节;

FUN: 功能码 03H 1个字节;

DATA START ADDR: 寄存器开始地址 2个字节(高在前、低在后);

NUM: 寄存器个数 2个字节(高在前、低在后)

CRC16: CRC 校验码 2个字节(低在前、高在后)

响应数据帧

Addr	Fun	Byte	Data1	Data1		·····.	DataN	DataN	CRC16	CRC16
		NUM	Hi	Lo			hi	lo	lo	hi
XXH	03H	XXH	XXH	XXH	•••		XXH	XXH	XXI	XXH

说明: ADDR: 从站地址 1个字节;

FUN: 功能码 03 1个字节;

BYTE NUM: 字节数目(2*寄存器数目)

DATA1: 寄存器 1 数据、2 个字节(高在前、低在后)

DATA2: 寄存器 2 数据、2 个字节(高在前、低在后)

DATAN: 寄存器 N 数据、2 个字节(高在前、低在后)

CRC16: CRC 校验码 2个字节(低在前、高在后)

预置多寄存器(功能码16)

由主站机发送包裹请求所有有效的寄存器(在起始寄存器和终止寄存器之间)。

16 位数据模式:

Addı	Fun	Datastar	Data star	lengtl	Lenth	NUM	data	Data	CRC1	CRC1
		addr h	Addr Io						lo	hi
XXH	10H	xxH	XX H	XX	Xx		xx H	XX H	XX Н	XX H

说明:

ADDR: 从站地址 1个字节;

FUN: 功能码 10 1 个字节;

DATA START ADDR: 寄存器开始地址 2个字节(高在前、低在后);

LENTH : 寄存器长度

NUM: 寄存器个数 1个字节()

DATA ...

DATA ...

CRC16: CRC 校验码 2个字节(低在前、高在后)

响应数据帧

Addr	Fun	Datastart	Data start	length	Lenth	CRC16	CRC16
		addr hi	Addr Io			lo	hi
XXH	10H	xxH	XX H	Xx	Xx	XXH	XXH

说明:

ADDR: 从站地址 1个字节;

FUN: 功能码 10H 1个字节;

ADDRESS: 地址 (2*寄存器数目)

LENGTH: 2个字节(高在前、低在后)

CRC16: CRC 校验码 2个字节(低在前、高在后)

五、常见问题及及解决办法

常见问题	可能出现故障原因	检查方法	解决办法
通电后电源指示灯不亮	电源线接触不良或连接错误	(1) 检查电源正负极是 否接反;(2) 检查供电电压是否正常;(3) 检查电源接头是否松动。	
	传感器线缆接头接触不 良或传感器类型接入错 误	(1) 检查传感器线缆连接接 头是否松动;(2) 检查传感器线缆是否接 入指定采样通道。	(2) 调整传感器信号线
网口或 485 接口读取采	未初始化完成; (2) 串口波特率设置	(1) 检查电源指示灯是 否点亮,运行指示灯是否闪烁; (2) 检查串口波特率或者网口 IP 与端口号设置是否正确。	(1) 上电后等待所用指示灯闪烁正常后进行操作; (2) 更改正确的波特率或 IP 地址与端口号。